A monkey escaped from it’s cage in the zoo. Two guards are trying to catch it. The monkey and the guards run along the zoo lanes. There are six straight lanes in the zoo: three long ones form an equilateral triangle and three short ones connect the middles of the triangle sides. Every moment of the time the monkey and the guards can see each other. Will the guards be able to catch the monkey, if it runs three times faster than the guards? (In the beginning of the chase the guards are in one of the triangle vertices and the monkey is in another one.)
A two-player game with matches. There are 37 matches on the table. In each turn, a player is allowed to take no more than 5 matches. The winner of the game is the player who takes the final match. Which player wins, if the right strategy is used?
Michael thinks of a number no less than \(1\) and no greater than \(1000\). Victoria is only allowed to ask questions to which Michael can answer “yes” or “no” (Michael always tells the truth). Can Victoria figure out which number Michael thought of by asking \(10\) questions?
In the rebus below, replace the letters with numbers such that the same numbers are represented with the same letter. The asterisks can be replaced with any numbers such that the equations hold.
An explanation of the notation used: the unknown numbers in the third and fourth rows are the results of multiplying 1995 by each digit of the number in the second row, respectively. These third and fourth rows are added together to get the total result of the multiplication \(1995 \times ***\), which is the number in the fifth row. This is an example of a “long multiplication table”.
Jessica, Nicole and Alex received 6 coins between them: 3 gold coins and 3 silver coins. Each of them received 2 coins. Jessica doesn’t know which coins the others received but only which coins she has. Think of a question which Jessica can answer with either “yes”, “no” or “I don’t know” such that from the answer you can know which coins Jessica has.
There is a \(5\times 9\) rectangle drawn on squared paper. In the lower left corner of the rectangle is a button. Kevin and Sophie take turns moving the button any number of squares either to the right or up. Kevin goes first. The winner is the one who places the button in upper right corner. Who would win, Kevin or Sophie, by using the right strategy?
There are \(12\) aliens in the High Council of the planet of liars and truth tellers. “There is no-one honest here,” said the first member of the council. “There is at most one honest person here,” said the second person. The third person said that there are at most \(2\) honest members, the fourth person said there are at most \(3\) honest aliens, and so on until the twelfth person, who said there are at most \(11\) honest aliens. How many honest members are in the High Council?
In a class there are 50 children. Some of the children know all the letters except “h” and they miss this letter out when writing. The rest know all the letters except “c” which they also miss out. One day the teacher asked 10 of the pupils to write the word “cat”, 18 other pupils to write “hat” and the rest to write the word “chat”. The words “cat” and “hat” each ended up being written 15 times. How many of the pupils wrote their word correctly?
A row of 4 coins lies on the table. Some of the coins are real and some of them are fake (the ones which weigh less than the real ones). It is known that any real coin lies to the left of any false coin. How can you determine whether each of the coins on the table is real or fake, by weighing once using a balance scale?
One day all the truth tellers on the planet decided to carry a clearly visible mark of truth in order to be distinguished from liars. Two truth tellers and two liars met and looked at each other. Which of them could say the phrase:
“All of us are truth tellers.”
“Only one of you is a truth teller.”
“Exactly two of you are truth tellers.”