Prove that if the irreducible rational fraction \(p/q\) is a root of the polynomial \(P (x)\) with integer coefficients, then \(P (x) = (qx - p) Q (x)\), where the polynomial \(Q (x)\) also has integer coefficients.
One of the roots of the equation \(x^2 + ax + b = 0\) is \(1 + \sqrt 3\). Find \(a\) and \(b\) if you know that they are rational.
A square grid on the plane and a triangle with vertices at the nodes of the grid are given. Prove that the tangent of any angle in the triangle is a rational number.
Prove that there is at most one point of an integer lattice on a circle with centre at \((\sqrt 2, \sqrt 3)\).
Prove that if \((p, q) = 1\) and \(p/q\) is a rational root of the polynomial \(P (x) = a_nx^n + \dots + a_1x + a_0\) with integer coefficients, then
a) \(a_0\) is divisible by \(p\);
b) \(a_n\) is divisible by \(q\).
Author: A. Khrabrov
Do there exist integers \(a\) and \(b\) such that
a) the equation \(x^2 + ax + b = 0\) does not have roots, and the equation \(\lfloor x^2\rfloor + ax + b = 0\) does have roots?
b) the equation \(x^2 + 2ax + b = 0\) does not have roots, and the equation \(\lfloor x^2\rfloor + 2ax + b = 0\) does have roots?
Note that here, square brackets represent integers and curly brackets represent non-integer values or 0.
Does there exist a number \(h\) such that for any natural number \(n\) the number \(\lfloor h \times 2021^n\rfloor\) is not divisible by \(\lfloor h \times 2021^{n-1}\rfloor\)?
For what natural numbers \(a\) and \(b\) is the number \(\log_{a} b\) rational?
Derive from the theorem in question 61013 that \(\sqrt{17}\) is an irrational number.
The numbers \(x\), \(y\) and \(z\) are such that all three numbers \(x + yz\), \(y + zx\) and \(z + xy\) are rational, and \(x^2 + y^2 = 1\). Prove that the number \(xyz^2\) is also rational.