Prove that for any positive integer \(n\) the inequality
is true.
Find the sum \(1/3 + 2/3 + 2^2/3 + 2^3/3 + \dots + 2^{1000}/3\).
In a group of friends, each two people have exactly five common acquaintances. Prove that the number of pairs of friends is divisible by 3.
Author: A. Khrabrov
Do there exist integers \(a\) and \(b\) such that
a) the equation \(x^2 + ax + b = 0\) does not have roots, and the equation \(\lfloor x^2\rfloor + ax + b = 0\) does have roots?
b) the equation \(x^2 + 2ax + b = 0\) does not have roots, and the equation \(\lfloor x^2\rfloor + 2ax + b = 0\) does have roots?
Note that here, square brackets represent integers and curly brackets represent non-integer values or 0.
Does there exist a number \(h\) such that for any natural number \(n\) the number \(\lfloor h \times 2021^n\rfloor\) is not divisible by \(\lfloor h \times 2021^{n-1}\rfloor\)?
Prove that for every natural number \(n > 1\) the equality: \[\lfloor n^{1 / 2}\rfloor + \lfloor n^{1/ 3}\rfloor + \dots + \lfloor n^{1 / n}\rfloor = \lfloor \log_{2}n\rfloor + \lfloor \log_{3}n\rfloor + \dots + \lfloor \log_{n}n\rfloor\] is satisfied.
Find the number of solutions in natural numbers of the equation \(\lfloor x / 10\rfloor = \lfloor x / 11\rfloor + 1\).
Solve the equation \((x + 1)^3 = x^3\).
Solve the inequality: \(\lfloor x\rfloor \times \{x\} < x - 1\).