There are 40 identical cords. If you set any cord on fire on one side, it burns, and if you set it alight on the other side, it will not burn. Ahmed arranges the cords in the form of a square (see the figure below, each cord makes up a side of a cell). Then, Helen arranges 12 fuses. Will Ahmed be able to lay out the cords in such a way that Helen will not be able to burn all of them?
In a \(10 \times 10\) square, all of the cells of the upper left \(5 \times 5\) square are painted black and the rest of the cells are painted white. What is the largest number of polygons that can be cut from this square (on the boundaries of the cells) so that in every polygon there would be three times as many white cells than black cells? (Polygons do not have to be equal in shape or size.)
In a tournament, 100 wrestlers are taking part, all of whom have different strengths. In any fight between two wrestlers, the one who is stronger always wins. In the first round the wrestlers broke into random pairs and fought each other. For the second round, the wrestlers once again broke into random pairs of rivals (it could be that some pairs will repeat). The prize is given to those who win both matches. Find:
a) the smallest possible number of tournament winners;
b) the mathematical expectation of the number of tournament winners.
A group of psychologists developed a test, after which each person gets a mark, the number \(Q\), which is the index of his or her mental abilities (the greater \(Q\), the greater the ability). For the country’s rating, the arithmetic mean of the \(Q\) values of all of the inhabitants of this country is taken.
a) A group of citizens of country \(A\) emigrated to country \(B\). Show that both countries could grow in rating.
b) After that, a group of citizens from country \(B\) (including former ex-migrants from \(A\)) emigrated to country \(A\). Is it possible that the ratings of both countries have grown again?
c) A group of citizens from country \(A\) emigrated to country \(B\), and group of citizens from country \(B\) emigrated to country \(C\). As a result, each country’s ratings was higher than the original ones. After that, the direction of migration flows changed to the opposite direction – part of the residents of \(C\) moved to \(B\), and part of the residents of \(B\) migrated to \(A\). It turned out that as a result, the ratings of all three countries increased again (compared to those that were after the first move, but before the second). (This is, in any case, what the news agencies of these countries say). Can this be so (if so, how, if not, why)?
(It is assumed that during the considered time, the number of citizens \(Q\) did not change, no one died and no one was born).
Elephants, rhinoceroses, giraffes. In all zoos where there are elephants and rhinoceroses, there are no giraffes. In all zoos where there are rhinoceroses and there are no giraffes, there are elephants. Finally, in all zoos where there are elephants and giraffes, there are also rhinoceroses. Could there be a zoo in which there are elephants, but there are no giraffes and no rhinoceroses?
On a table, there are five coins lying in a row: the middle one lies with a head facing upwards, and the rest lie with the tails side up. It is allowed to simultaneously flip three adjacent coins. Is it possible to make all five coins positioned with the heads side facing upwards with the help of several such overturns?
Three hedgehogs divided three pieces of cheese of mass of 5g, 8g and 11g. The fox began to help them. It can cut off and eat 1 gram of cheese from any two pieces at the same time. Can the fox leave the hedgehogs equal pieces of cheese?
A rectangle is cut into several smaller rectangles, the perimeter of each of which is an integer number of meters. Is it true that the perimeter of the original rectangle is also an integer number of meters?
Eight schoolchildren solved \(8\) tasks. It turned out that \(5\) schoolchildren solved each problem. Prove that there are two schoolchildren, who solved every problem at least once.
If each problem is solved by \(4\) pupils, prove that it is not necessary to have two schoolchildren who would solve each problem.
A country is called a Fiver if, in it, each city is connected by airlines with exactly with five other cities (there are no international flights).
a) Draw a scheme of airlines for a country that is made up of 10 cities.
b) How many airlines are there in a country of 50 cities?
c) Can there be a Fiver country, in which there are exactly 46 airlines?