Problems

Age
Difficulty
Found: 17

On a function \(f (x)\), defined on the entire real line, it is known that for any \(a>1\) the function \(f (x) + f (ax)\) is continuous on the whole line. Prove that \(f (x)\) is also continuous on the whole line.

Method of iterations. In order to approximately solve an equation, it is allowed to write \(f (x) = x\), by using the iteration method. First, some number \(x_0\) is chosen, and then the sequence \(\{x_n\}\) is constructed according to the rule \(x_{n + 1} = f (x_n)\) (\(n \geq 0\)). Prove that if this sequence has the limit \(x * = \lim \limits_ {n \to \infty} x_n\), and the function \(f (x)\) is continuous, then this limit is the root of the original equation: \(f (x ^*) = x^*\).

Find the largest value of the expression \(a + b + c + d - ab - bc - cd - da\), if each of the numbers \(a\), \(b\), \(c\) and \(d\) belongs to the interval \([0, 1]\).

We consider a function \(y = f (x)\) defined on the whole set of real numbers and satisfying \(f (x + k) \times (1 - f (x)) = 1 + f (x)\) for some number \(k \ne 0\). Prove that \(f (x)\) is a periodic function.

\(f(x)\) is an increasing function defined on the interval \([0, 1]\). It is known that the range of its values belongs to the interval \([0, 1]\). Prove that, for any natural \(N\), the graph of the function can be covered by \(N\) rectangles whose sides are parallel to the coordinate axes so that the area of each is \(1/N^2\). (In a rectangle we include its interior points and the points of its boundary).

The functions \(f\) and \(g\) are defined on the entire number line and are reciprocal. It is known that \(f\) is represented as a sum of a linear and a periodic function: \(f (x) = kx + h (x)\), where \(k\) is a number, and \(h\) is a periodic function. Prove that \(g\) is also represented in this form.

Are there functions \(p (x)\) and \(q (x)\) such that \(p (x)\) is an even function and \(p (q (x))\) is an odd function (different from identically zero)?

The function \(f (x)\) is defined for all real numbers, and for any \(x\) the equalities \(f (x + 2) = f (2 - x)\) and \(f (x + 7) = f (7 - x)\) are satisfied. Prove that \(f (x)\) is a periodic function.