With a non-zero number, the following operations are allowed: \(x \rightarrow \frac{1+x}{x}\), \(x \rightarrow \frac{1-x}{x}\). Is it true that from every non-zero rational number one can obtain each rational number with the help of a finite number of such operations?
At all rational points of the real line, integers are arranged. Prove that there is a segment such that the sum of the numbers at its ends does not exceed twice the number on its middle.
A numeric set \(M\) containing 2003 distinct numbers is such that for every two distinct elements \(a, b\) in \(M\), the number \(a^2+ b\sqrt 2\) is rational. Prove that for any \(a\) in \(M\) the number \(q\sqrt 2\) is rational.
Prove the irrationality of the following numbers:
a) \(\sqrt{3}{17}\)
b) \(\sqrt{2} + \sqrt{3}\)
c) \(\sqrt{2} + \sqrt{3} + \sqrt{5}\)
d) \(\sqrt{3}{3} - \sqrt{2}\)
e) \(\cos 10^{\circ}\)
f) \(\tan 10^{\circ}\)
g) \(\sin 1^{\circ}\)
h) \(\log_{2}3\)
Let \(n\) numbers are given together with their product \(p\). The difference between \(p\) and each of these numbers is an odd number.
Prove that all \(n\) numbers are irrational.