Problems

Age
Difficulty
Found: 125

Henry wrote a note on a piece of paper, folded it two times, and wrote “FOR MOM” on the top. Then he unfolded the note, added something to it, randomly folded the note along the old folding lines (not necessarily in the same way as he did it before) and left it on the table with random side up. Find the probability that “FOR MOM” is still on the top.

Prove that in a three-digit number, that is divisible by 37, you can always rearrange the numbers so that the new number will also be divisible by 37.

The frog jumps over the vertices of the hexagon \(ABCDEF\), each time moving to one of the neighbouring vertices.

a) How many ways can it get from \(A\) to \(C\) in \(n\) jumps?

b) The same question, but on condition that it cannot jump to \(D\)?

c) Let the frog’s path begin at the vertex \(A\), and at the vertex \(D\) there is a mine. Every second it makes another jump. What is the probability that it will still be alive in \(n\) seconds?

d)* What is the average life expectancy of such frogs?

Carry out the following experiment 10 times: first, toss a coin 10 times in a row and record the number of heads, then toss the coin 9 times in a row and again, record the number of heads. We call the experiment successful, if, in the first case, the number of heads is greater than in the second case. After conducting a series of 10 such experiments, record the number of successful and unsuccessful experiments. Collect the statistics in the form of a table.

a) Anton throws a coin 3 times, and Tina throws it two times. What is the probability that Anton gets more heads than Tina?

b) Anton throws a coin \(n + 1\) times, and Tanya throws it \(n\) times. What is the probability that Anton gets more heads than Tina?

In a school football tournament, 8 teams participate, each of which plays equally well in football. Each game ends with the victory of one of the teams. A randomly chosen by a draw number determines the position of the teams in the table:

What is the probability that teams \(A\) and \(B\):

a) will meet in the semifinals;

b) will meet in the finals.

Louis performs in the USE test in mathematics. The exam consists of three types of assignments: \(A\), \(B\), and \(C\). For each of the tasks of type \(A\), four choices are given, only one of which is correct. There are 10 of such tasks. Tasks of type \(B\) and \(C\) require a written

Is it possible to:

a) load two coins so that the probability of “heads” and “tails” were different, and the probability of getting any of the combinations “tails, tails,” “heads, tails”, “heads, heads” be the same?

b) load two dice so that the probability of getting any amount from 2 to 12 would be the same?