Problems

Age
Difficulty
Found: 60

Write at random a two-digit number. What is the probability that the sum of the digits of this number is 5?

A player in the card game Preferans has 4 trumps, and the other 4 are in the hands of his two opponents. What is the probability that the trump cards are distributed a) \(2: 2\); b) \(3: 1\); c) \(4: 0\)?

In a school football tournament, 8 teams participate, each of which plays equally well in football. Each game ends with the victory of one of the teams. A randomly chosen by a draw number determines the position of the teams in the table:

What is the probability that teams \(A\) and \(B\):

a) will meet in the semifinals;

b) will meet in the finals.

Louis performs in the USE test in mathematics. The exam consists of three types of assignments: \(A\), \(B\), and \(C\). For each of the tasks of type \(A\), four choices are given, only one of which is correct. There are 10 of such tasks. Tasks of type \(B\) and \(C\) require a written

Peter plays a computer game “A bunch of stones.” First in his pile of stones he has 16 stones. Players take turns taking from the pile either 1, 2, 3 or 4 stones. The one who takes the last stone wins. Peter plays this for the first time and therefore each time he takes a random number of stones, whilst not violating the rules of the game. The computer plays according to the following algorithm: on each turn, it takes the number of stones that leaves it to be in the most favorable position. The game always begins with Peter. How likely is it that Peter will win?

Peter proposes to Sam the opportunity to play the following game. Peter gives Sam two boxes of sweets. In each of the two boxes are chocolate sweets and caramels. In all, there are 25 candies in both boxes. Peter proposes that Sam takes a candy from each box. If both sweets turn out to be chocolate, then Sam wins. Otherwise, Peter wins. The probability that Sam will get two caramels is 0.54. Who has a greater chance of winning?

On each of four cards there is written a natural number. Take two cards at random and add the numbers on them. With equal probability, this amount can be less than 9, equal to 9 or more 9. What numbers can be written on the cards?

There are two symmetrical cubes. Is it possible to write some numbers on their faces so that the sum of the points when throwing these cubes on the upwards facing face on landing takes the values 1, 2, ..., 36 with equal probabilities?