What has a greater value: \(300!\) or \(100^{300}\)?
A numerical sequence is defined by the following conditions: \[a_1 = 1, \quad a_{n+1} = a_n + \lfloor \sqrt{a_n}\rfloor .\]
Prove that among the terms of this sequence there are an infinite number of complete squares.
Prove that the 13th day of the month is more likely to occur on a Friday than on other days of the week. It is assumed that we live in the Gregorian style calendar.
One of \(n\) prizes is embedded in each chewing gum pack, where each prize has probability \(1/n\) of being found.
How many packets of gum, on average, should I buy to collect the full collection prizes?