There are \(n\) integers. Prove that among them either there are several numbers whose sum is divisible by \(n\) or there is one number divisible by \(n\) itself.
Peter has 28 classmates. Each 2 out of these 28 have a different number of friends in the class. How many friends does Peter have?
Prove that if the irreducible rational fraction \(p/q\) is a root of the polynomial \(P (x)\) with integer coefficients, then \(P (x) = (qx - p) Q (x)\), where the polynomial \(Q (x)\) also has integer coefficients.
There are 8 glasses of water on the table. You are allowed to take any two of the glasses and make them have equal volumes of water (by pouring some water from one glass into the other). Prove that, by using such operations, you can eventually get all the glasses to contain equal volumes of water.
a) There are three identical large vessels. In one there are 3 litres of syrup, in the other – 20 litres of water, and the third is empty. You can pour all the liquid from one vessel into another or into a sink. You can choose two vessels and pour into one of them liquid from the third, until the liquid levels in the selected vessels are equal. How can you get 10 litres of diluted 30% syrup?
b) The same, but there is \(N\) l of water. At what integer values of \(N\) can you get 10 liters of diluted 30% syrup?
Monica is in a broken space buggy at a distance of 18 km from the Lunar base, in which Rachel sits. There is a stable radio communication system between them. The air reserve in the space buggy is enough for 3 hours, in addition, Monica has an air cylinder for the spacesuit, with an air reserve of 1 hour. Rachel has a lot of cylinders with an air supply of 2 hours each. Rachel can not carry more than two cylinders at the same time (one of them she uses herself). The speed of movement on the Moon in the suit is 6 km/h. Could Rachel save Monica and not die herself?
301 schoolchildren came to the school’s New Year’s party in the city of Moscow. Some of them always tell the truth, and the rest always lie. Each of some 200 students said: “If I leave the hall, then among the remaining students, the majority will be liars.” Each of the other schoolchildren said: “If I leave the room, then among the remaining students, there will be twice as many liars as those who speak the truth.” How many liars were at the party?
Two play the following game. There is a pile of stones. The first takes either 1 stone or 10 stones with each turn. The second takes either m or n stones with every turn. They take turns, beginning with the first player. He who can not make a move, loses. It is known that for any initial quantity of stones, the first one can always play in such a way as to win (for any strategy of the second player). What values can m and n take?
A robot came up with a cipher for writing words: he replaced some letters of the alphabet with single-digit or two-digit numbers, using only the digits 1, 2 and 3 (different letters it replaces with different numbers). First, he wrote down, using the cipher: \(ROBOT = 3112131233\). Having encrypted the words \(CROCODIL\) and \(BEGEMOT\), he was surprised to note that the numbers were completely identical! Then the Robot ciphered the word \(MATHEMATICS\). Write down the number that he got.
At a contest named “Ah well, monsters!”, 15 dragons stand in a row. Between neighbouring dragons the number of heads differs by 1. If the dragon has more heads than both of his two neighbors, he is considered cunning, if he has less than both of his neighbors – strong, the rest (including those standing at the edges) are considered ordinary. In the row there are exactly four cunning dragons – with 4, 6, 7 and 7 heads and exactly three strong ones – with 3, 3 and 6 heads. The first and last dragons have the same number of heads.
a) Give an example of how this could occur.
b) Prove that the number of heads of the first dragon in all potential examples is the same.