Problems

Age
Difficulty
Found: 157

Can there exist two functions \(f\) and \(g\) that take only integer values such that for any integer \(x\) the following relations hold:

a) \(f (f (x)) = x\), \(g (g (x)) = x\), \(f (g (x)) > x\), \(g (f (x)) > x\)?

b) \(f (f (x)) < x\), \(g (g (x)) < x\), \(f (g (x)) > x\), \(g (f (x)) > x\)?

At all rational points of the real line, integers are arranged. Prove that there is a segment such that the sum of the numbers at its ends does not exceed twice the number on its middle.

A numeric set \(M\) containing 2003 distinct numbers is such that for every two distinct elements \(a, b\) in \(M\), the number \(a^2+ b\sqrt 2\) is rational. Prove that for any \(a\) in \(M\) the number \(q\sqrt 2\) is rational.

The functions \(f (x) - x\) and \(f (x^2) - x^6\) are defined for all positive \(x\) and increase. Prove that the function

image

also increases for all positive \(x\).

The quadratic trinomials \(f (x)\) and \(g (x)\) are such that \(f' (x) g' (x) \geq | f (x) | + | g (x) |\) for all real \(x\). Prove that the product \(f (x) g (x)\) is equal to the square of some trinomial.

Prove that if the numbers \(x, y, z\) satisfy the following system of equations for some values of \(p\) and \(q\): \[\begin{aligned} y &= x^2 + px + q,\\ z &= y^2 + py + q,\\ x &= z^2 + pz + q, \end{aligned}\] then the inequality \(x^2y + y^2z + z^2x \geq x^2z + y^2x + z^2y\) is satisfied.