Numbers \(a, b, c\) are integers with \(a\) and \(b\) being coprime. Let us assume that integers \(x_0\) and \(y_0\) are a solution for the equation \(ax + by = c\).
Prove that every solution for this equation has the same form \(x = x_0 + kb\), \(y = y_0 - ka\), with \(k\) being a random integer.
The student did not notice the multiplication sign between two three-digit numbers and wrote one six-digit number, which turned out to be seven times bigger than their product. Determine these numbers.
The student did not notice the multiplication sign between two seven-digit numbers and wrote one fourteen-digit number, which turned out to be three times bigger than their product. Determine these numbers.
To each pair of numbers \(x\) and \(y\) some number \(x * y\) is placed in correspondence. Find \(1993 * 1935\) if it is known that for any three numbers \(x, y, z\), the following identities hold: \(x * x = 0\) and \(x * (y * z) = (x * y) + z\).
Is there a sequence of natural numbers in which every natural number occurs exactly once, and for any \(k = 1, 2, 3, \dots\) the sum of the first \(k\) terms of the sequence is divisible by \(k\)?
At all rational points of the real line, integers are arranged. Prove that there is a segment such that the sum of the numbers at its ends does not exceed twice the number on its middle.
Prove that for any positive integer \(n\) the inequality
is true.
Find the sum \(1/3 + 2/3 + 2^2/3 + 2^3/3 + \dots + 2^{1000}/3\).
A numeric set \(M\) containing 2003 distinct numbers is such that for every two distinct elements \(a, b\) in \(M\), the number \(a^2+ b\sqrt 2\) is rational. Prove that for any \(a\) in \(M\) the number \(q\sqrt 2\) is rational.
Does there exist a function \(f (x)\) defined for all \(x \in \mathbb{R}\) and for all \(x, y \in \mathbb{R}\) satisfying the inequality \(| f (x + y) + \sin x + \sin y | < 2\)?