Problems

Age
Difficulty
Found: 58

Replace letters with digits to maximize the expression: \[NO + MORE + MATH\] (same letters stand for identical digits and different letters stand for different digits.)

The digits of a 3 digit number \(A\) were written in reverse order and this is the number \(B\). Is it possible to find a value of \(A\) such that the sum of \(A\) and \(B\) has only odd numbers as its digits?

Let \(x\) be a 2 digit number. Let \(A\), \(B\) be the first (tens) and second (units) digits of \(x\), respectively. Suppose \(A\) is twice as large as \(B\). If we add the square of \(A\) to \(x\) then we get the square of a certain whole number. Find the value of \(x\).

How many distinct seven-digit numbers exist? It is assumed that the first digit cannot be zero.

We call a natural number “fancy”, if it is made up only of odd digits. How many four-digit “fancy” numbers are there?

We are given 51 two-digit numbers – we will count one-digit numbers as two-digit numbers with a leading 0. Prove that it is possible to choose 6 of these so that no two of them have the same digit in the same column.

Prove that amongst any 11 different decimal fractions of infinite length, there will be two whose digits in the same column – 10ths, 100s, 1000s, etc – coincide (are the same) an infinite number of times.

How many six-digit numbers exist, for which each succeeding number is smaller than the previous one?

Why are the equalities \(11^2 = 121\) and \(11^3 = 1331\) similar to the lines of Pascal’s triangle? What is \(11^4\) equal to?

How many four-digit numbers can be made using the numbers 1, 2, 3, 4 and 5, if:

a) no digit is repeated more than once;

b) the repetition of digits is allowed;

c) the numbers should be odd and there should not be any repetition of digits?