The student did not notice the multiplication sign between two three-digit numbers and wrote one six-digit number, which turned out to be seven times bigger than their product. Determine these numbers.
The student did not notice the multiplication sign between two seven-digit numbers and wrote one fourteen-digit number, which turned out to be three times bigger than their product. Determine these numbers.
Two people play a game with the following rules: one of them guesses a set of integers \((x_1, x_2, \dots , x_n)\) which are single-valued digits and can be either positive or negative. The second person is allowed to ask what is the sum \(a_1x_1 + \dots + a_nx_n\), where \((a_1, \dots ,a_n)\) is any set. What is the smallest number of questions for which the guesser recognizes the intended set?
Prove that: \[a_1 a_2 a_3 \cdots a_{n-1}a_n \times 10^3 \equiv a_{n-1} a_n \times 10^3 \pmod4,\] where \(n\) is a natural number and \(a_i\) for \(i=1,2,\ldots, n\) are the digits of some number.
How many distinct seven-digit numbers exist? It is assumed that the first digit cannot be zero.
We call a natural number “fancy”, if it is made up only of odd digits. How many four-digit “fancy” numbers are there?
Prove that amongst any 11 different decimal fractions of infinite length, there will be two whose digits in the same column – 10ths, 100s, 1000s, etc – coincide (are the same) an infinite number of times.
How many six-digit numbers exist, for which each succeeding number is smaller than the previous one?
How many four-digit numbers can be made using the numbers 1, 2, 3, 4 and 5, if:
a) no digit is repeated more than once;
b) the repetition of digits is allowed;
c) the numbers should be odd and there should not be any repetition of digits?
Prove that for any natural number there is a multiple of it, the decimal notation of which consists of only 0 and 1.