Problems

Age
Difficulty
Found: 144

The parliament of a certain country has two houses with an equal number of members. In order to make a decision on an important issue all the members voted and there were no abstentions. When the chairman announced that the decision had been taken with a 23-vote advantage, the opposition leader declared that the results had been rigged. How did he know it?

Is it possible to find natural numbers \(x\), \(y\) and \(z\) which satisfy the equation \(28x+30y+31z=365\)?

Prove that if \(p\) is a prime number, then \((a + b)^p - a^p - b^p\) is divisible by \(p\) for any integers \(a\) and \(b\).

What figure should I put in place of the “?” in the number \(888 \dots 88\,?\,99 \dots 999\) (eights and nines are written 50 times each) so that it is divisible by 7?

Prove the divisibility rule for \(3\): the number is divisible by \(3\) if and only if the sum of its digits is divisible by \(3\).

While studying numbers and its properites, Robinson came across a 3-digit prime number with the last digit being equal to the sum of the first two digits. What was the last digit of that number if among the number did not have any zeros among it’s digits?

Prove the divisibility rule for \(4\): a number is divisible by \(4\) if and only if the number made by the last two digits of the original number is divisible by \(4\);
Can you come up with a divisibility rule for \(8\)?

When Robinson Crusoe’s friend and assistant named Friday learned about divisibility rules, he was so impressed that he proposed his own rule:

a number is divisible by 27 if the sum of it’s digits is divisible by 27.

Was he right?

One day Friday multiplied all the numbers from 1 to 100. The product appeared to be a pretty large number, and he added all the digits of that number to receive a new smaller number. Even then he did not think the number was small enough, and added all the digits again to receive a new number. He continued this process of adding all the digits of the newly obtained number again and again, until finally he received a one-digit number. Can you tell what number was it?

Robinson Crusoe’s friend Friday was looking at \(3\)-digit numbers with the same first and third digits. He soon noticed that such number is divisible by \(7\) if the sum of the second and the third digits is divisible by \(7\). Prove that he was right.