There are \(n\) integers. Prove that among them either there are several numbers whose sum is divisible by \(n\) or there is one number divisible by \(n\) itself.
Is it possible to find natural numbers \(x\), \(y\) and \(z\) which satisfy the equation \(28x+30y+31z=365\)?
Given a board (divided into squares) of the size: a) \(10\times 12\), b) \(9\times 10\), c) \(9\times 11\), consider the game with two players where: in one turn a player is allowed to cross out any row or any column if there is at least one square not crossed out. The loser is the one who cannot make a move. Is there a winning strategy for one of the players?
Prove that if \((p, q) = 1\) and \(p/q\) is a rational root of the polynomial \(P (x) = a_nx^n + \dots + a_1x + a_0\) with integer coefficients, then
a) \(a_0\) is divisible by \(p\);
b) \(a_n\) is divisible by \(q\).
Prove that if \(x_0^4 + a_1x_0^3 + a_2x_0^2 + a_3x_0 + a_4\) and \(4x_0^3 + 3a_1x_0^2 + 2a_2x_0 + a_3 = 0\) then \(x^4 + a_1x^3 + a_2x^2 + a_3x + a_4\) is divisible by \((x - x_0)^2\).
Does there exist a number \(h\) such that for any natural number \(n\) the number \(\lfloor h \times 2021^n\rfloor\) is not divisible by \(\lfloor h \times 2021^{n-1}\rfloor\)?
Find the smallest \(k\) such that \(k!\) (\(k!= k\times(k-1)\times \ldots \times 1\)) is divisible by \(2024\).
While studying numbers and its properites, Robinson came across a 3-digit prime number with the last digit being equal to the sum of the first two digits. What was the last digit of that number if among the number did not have any zeros among it’s digits?
When Robinson Crusoe’s friend and assistant named Friday learned about divisibility rules, he was so impressed that he proposed his own rule:
a number is divisible by 27 if the sum of it’s digits is divisible by 27.
Was he right?
One day Friday multiplied all the numbers from 1 to 100. The product appeared to be a pretty large number, and he added all the digits of that number to receive a new smaller number. Even then he did not think the number was small enough, and added all the digits again to receive a new number. He continued this process of adding all the digits of the newly obtained number again and again, until finally he received a one-digit number. Can you tell what number was it?