Let \(n\) be some positive number. It is obvious that \[2n-1<2n.\] Take another positive number \(a\), and multiply both sides of the inequality by \((-a)\) \[-2na +a< -2na.\] Now, subtracting \((-2na)\) from both sides of the inequality we get \(a<0\).
Thus, ALL POSITIVE NUMBERS ARE NEGATIVE!
Suppose \(a \neq b\). We can write \[-a = b - (a+b)\] and \[-b = a - (a+b)\] Since \((-a)b = a(-b)\), then \[( b - (a+b))b = a(a - (a+b))\] Removing the brackets, we have \[b^2 - (a+b)b = a^2 - a(a+b)\] Adding \(\left(\frac{a+b}{2}\right)^2\) to each member of the equality we may complete the square of the differences of two numbers \[\left(b - \frac{a+b}{2}\right)^2 = \left(a - \frac{a+b}{2}\right)^2\] From the equality of the squares we conclude the equality of the bases \[b - \frac{a+b}{2} = a - \frac{a+b}{2}.\] Adding \(\frac{a+b}{2}\) to both sides of equality we get \(a=b\). Therefore, WE HAVE SHOWED THAT FROM \(a\neq b\) IT FOLLOWS \(a=b\).
Let \(x\) be equal to 1. Then we can write \(x^2=1\), or putting it differently \(x^2 -1 =0\). By using the difference of two squares formula we get \[(x+1)(x-1)=0\] Dividing both sides of the equality by \(x-1\) we obtain \[x+1=0,\] in other words \(x=-1\). But earlier we assumed \(x=1\). THUS \[-1=1\ !\]
In every right-angled triangle the arm is greater than the hypotenuse. Consider a triangle \(ABC\) with right angle at \(C\).
The difference of the squares of the hypothenuse and one of the arms is \(AB^2 -BC^2\). This expression can be represented in the form of a product \[AB^2 -BC^2 = (AB - BC)(AB+BC)\] or \[AB^2 -BC^2 = -(BC - AB)(AB+BC)\] Dividing the right hand sides by the product \(-(AB-BC)(AB+BC)\), we obtain the proportion \[\frac{AB+BC}{-(AB+BC)} = \frac{BC-AB}{AB-BC}.\] Since the positive quantity is greater than the negative one we have \(AB+BC>-(AB+BC)\). But then also \(BC-AB>AB-BC\), and therefore \(2BC>2AB\), or \(BC>AB\), i.e. THE ARM IS GREATER THAN THE HYPOTENUSE!
If you are on a boat and toss a suitcase overboard, will the water level rise or fall?
You have 26 constants, labeled \(A\) through \(Z\). Let \(A\) equal 1. The other constants have values equal to the letter’s position in the alphabet, raised to the power of the previous constant. That means that \(B\) (the second letter) = \(2^A=2^1= 2\), \(C = 3^B=3^2= 9\), and so on. Find the exact numerical value for this expression: \[(X-A)(X-B)(X-C)\dots (X-Y)(X-Z).\]
Two people had two square cakes. Each person made 2 straight cuts from edge to edge on their cake. After doing this, one person ended up with three pieces, and the other with four. How could this be?
Suppose you meet a person inhabiting this planet and they ask you “Am I a Goop?" What would you conclude?
On this planet you meet a couple called Tom and Betty. You hear Tom ask someone: “Are Betty and I both Goops?"
What kind is Betty?
You learn that one of the aliens living on this planet is a wizard. You learnt that by overhearing a certain question being asked on the planet. What question could that have been?