I don’t know how the figure below can be made of several \(1\times5\) rectangles which do not overlap. I am willing to pay \(1\) pound if you show me a possible way of doing that which I have not seen before. What is the maximal amount of money a person can earn by solving this problem?
a) In Wonderland, there are three cities \(A\), \(B\) and \(C\). 6 roads lead from city \(A\) to city \(B\), and 4 roads lead from city \(B\) to city \(C\). How many ways can you travel from \(A\) to \(C\)?
b) In Wonderland, another city \(D\) was built as well as several new roads – two from \(A\) to \(D\) and two from \(D\) to \(C\). In how many ways can you now get from city \(A\) to city \(C\)?
17 squares are marked on an \(8\times 8\) chessboard. In chess a knight can move horizontally or vertically, one space then two or two spaces then one – eg: two down and one across, or one down and two across. Prove that it is always possible to pick two of these squares so that a knight would need no less than three moves to get from one to the other.
Prove that a graph, in which every two vertices are connected by exactly one simple path, is a tree.
Prove that, in a tree, every two vertices are connected by exactly one simple path.
Eugenie, arriving from Big-island, said that there are several lakes connected by rivers. Three rivers flow from each lake, and four rivers flow into each lake. Prove that she is wrong.
Several Top Secret Objects are connected by an underground railway in such a way that each Object is directly connected to no more than three others and from each Object one can reach any other Object by going and by changing no more than once. What is the maximum number of Top Secret Objects?
There is a counter on the chessboard. Two in turn move the counter to an adjacent on one side cell. It is forbidden to put a counter on a cell, which it has already visited. The one who can not make the next turn loses. Who wins with the right strategy?
Can you cover a \(10 \times 10\) board using only \(T\)-shaped tetrominos?
There are \(100\) people standing in line, and one of them is Arthur. Everyone in the line is either a knight, who always tells the truth, or a liar who always lies. Everyone except Arthur said, "There are exactly two liars between Arthur and me." How many liars are there in this line, if it is known that Arthur is a knight?