There are 13 weights. It is known that any 12 of them could be placed in 2 scale cups with 6 weights in each cup in such a way that balance will be held.
Prove the mass of all the weights is the same, if it is known that:
a) the mass of each weight in grams is an integer;
b) the mass of each weight in grams is a rational number;
c) the mass of each weight could be any real (not negative) number.
A monkey escaped from it’s cage in the zoo. Two guards are trying to catch it. The monkey and the guards run along the zoo lanes. There are six straight lanes in the zoo: three long ones form an equilateral triangle and three short ones connect the middles of the triangle sides. Every moment of the time the monkey and the guards can see each other. Will the guards be able to catch the monkey, if it runs three times faster than the guards? (In the beginning of the chase the guards are in one of the triangle vertices and the monkey is in another one.)
A two-player game with matches. There are 37 matches on the table. In each turn, a player is allowed to take no more than 5 matches. The winner of the game is the player who takes the final match. Which player wins, if the right strategy is used?
Two weighings. There are 7 coins which are identical on the surface, including 5 real ones (all of the same weight) and 2 counterfeit coins (both of the same weight, but lighter than the real ones). How can you find the 3 real coins with the help of two weighings on scales without weights?
Multiplication of numbers. Restore the following example of the multiplication of natural numbers if it is known that the sum of the digits of both factors is the same.
Restore the example of the multiplication.
Prove that the number of all arrangements of the largest possible amount of peaceful bishops (figures that move on diagonals and don’t threaten each other) on the \(8\times 8\) chessboard is an exact square.
There is a 12 litre barrel filled with water, and two empty barrels (one is 5 litres in volume and the other is 8 litres). Using these barrels, try to
a) divide the water into 2 parts with volumes: 3 litres and 9 litres;
b) divide the water into 2 parts with equal volume.
Michael thinks of a number no less than \(1\) and no greater than \(1000\). Victoria is only allowed to ask questions to which Michael can answer “yes” or “no” (Michael always tells the truth). Can Victoria figure out which number Michael thought of by asking \(10\) questions?
There are 6 locked suitcases and 6 keys to them. At the same time, it is not known to which suitcase each key fits. What is the smallest number of attempts you need to make in order to open all the suitcases for sure? And how many attempts will it take there are not 6 but 10 keys and suitcases?