Problems

Age
Difficulty
Found: 5

Can there exist two functions \(f\) and \(g\) that take only integer values such that for any integer \(x\) the following relations hold:

a) \(f (f (x)) = x\), \(g (g (x)) = x\), \(f (g (x)) > x\), \(g (f (x)) > x\)?

b) \(f (f (x)) < x\), \(g (g (x)) < x\), \(f (g (x)) > x\), \(g (f (x)) > x\)?

The functions \(f\) and \(g\) are defined on the entire number line and are reciprocal. It is known that \(f\) is represented as a sum of a linear and a periodic function: \(f (x) = kx + h (x)\), where \(k\) is a number, and \(h\) is a periodic function. Prove that \(g\) is also represented in this form.

Are there functions \(p (x)\) and \(q (x)\) such that \(p (x)\) is an even function and \(p (q (x))\) is an odd function (different from identically zero)?

The function \(f (x)\) is defined for all real numbers, and for any \(x\) the equalities \(f (x + 2) = f (2 - x)\) and \(f (x + 7) = f (7 - x)\) are satisfied. Prove that \(f (x)\) is a periodic function.