Three cyclists travel in one direction along a circular track that is 300 meters long. Each of them moves with a constant speed, with all of their speeds being different. A photographer will be able to make a successful photograph of the cyclists, if all of them are on some part of the track which has a length of \(d\) meters. What is the smallest value of \(d\) for which the photographer will be able to make a successful photograph sooner or later?
Harry and Matt came down from a mountain. Harry walked on foot, and Matt went skiing, which was seven times faster than Harry. Halfway down, Matt fell, broke his skis and his leg, and hence travelled twice as slow as Harry. Who will descend first from the mountain?