Let \(z_1\) and \(z_2\) be fixed points of a complex plane. Give a geometric description of the sets of all points \(z\) that satisfy the conditions:
a) \(\operatorname{arg} \frac{z - z_1}{z - z_2} = 0\);
b) \(\operatorname{arg} \frac{z_1 - z}{z - z_2} = 0\).
The numerical function \(f\) is such that for any \(x\) and \(y\) the equality \(f (x + y) = f (x) + f (y) + 80xy\) holds. Find \(f(1)\) if \(f(0.25) = 2\).