Problems

Age
Difficulty
Found: 150

Is there a sequence of natural numbers in which every natural number occurs exactly once, and for any \(k = 1, 2, 3, \dots\) the sum of the first \(k\) terms of the sequence is divisible by \(k\)?

Prove that there are no natural numbers \(a\) and \(b\) such that \(a^2 - 3b^2 = 8\).

Prove that if \(x_0^4 + a_1x_0^3 + a_2x_0^2 + a_3x_0 + a_4\) and \(4x_0^3 + 3a_1x_0^2 + 2a_2x_0 + a_3 = 0\) then \(x^4 + a_1x^3 + a_2x^2 + a_3x + a_4\) is divisible by \((x - x_0)^2\).

Prove the divisibility rule for \(3\): the number is divisible by \(3\) if and only if the sum of its digits is divisible by \(3\).

Find the smallest \(k\) such that \(k!\) (\(k!= k\times(k-1)\times \ldots \times 1\)) is divisible by \(2024\).

While studying numbers and its properites, Robinson came across a 3-digit prime number with the last digit being equal to the sum of the first two digits. What was the last digit of that number if among the number did not have any zeros among it’s digits?