There are \(n\) integers. Prove that among them either there are several numbers whose sum is divisible by \(n\) or there is one number divisible by \(n\) itself.
Cut the interval \([-1, 1]\) into black and white segments so that the integrals of any a) linear function; b) a square trinomial in white and black segments are equal.
\(x_1\) is the real root of the equation \(x^2 + ax + b = 0\), \(x_2\) is the real root of the equation \(x^2 - ax - b = 0\).
Prove that the equation \(x^2 + 2ax + 2b = 0\) has a real root, enclosed between \(x_1\) and \(x_2\). (\(a\) and \(b\) are real numbers).
Given a square trinomial \(f (x) = x^2 + ax + b\). It is known that for any real \(x\) there exists a real number \(y\) such that \(f (y) = f (x) + y\). Find the greatest possible value of \(a\).
We are given a polynomial \(P(x)\) and numbers \(a_1\), \(a_2\), \(a_3\), \(b_1\), \(b_2\), \(b_3\) such that \(a_1a_2a_3 \ne 0\). It turned out that \(P (a_1x + b_1) + P (a_2x + b_2) = P (a_3x + b_3)\) for any real \(x\). Prove that \(P (x)\) has at least one real root.
It is known that a certain polynomial at rational points takes rational values. Prove that all its coefficients are rational.
Prove that multiplying the polynomial \((x + 1)^{n-1}\) by any polynomial different from zero, we obtain a polynomial having at least \(n\) nonzero coefficients.
Prove that there are infinitely many composite numbers among the numbers \(\lfloor 2^k \sqrt{2}\rfloor\) (\(k = 0, 1, \dots\)).
It is known that \(\cos \alpha^{\circ} = 1/3\). Is \(\alpha\) a rational number?
Let \(f (x)\) be a polynomial of degree \(n\) with roots \(\alpha_1, \dots , \alpha_n\). We define the polygon \(M\) as the convex hull of the points \(\alpha_1, \dots , \alpha_n\) on the complex plane. Prove that the roots of the derivative of this polynomial lie inside the polygon \(M\).