Every day, James bakes a square cake size \(3\times3\). Jack immediately cuts out for himself four square pieces of size \(1\times1\) with sides parallel to the sides of the cake (not necessarily along the \(3\times3\) grid lines). After that, Sarah cuts out from the rest of the cake a square piece with sides, also parallel to the sides of the cake. What is the largest piece of cake that Sarah can count on, regardless of Jack’s actions?
A unit square is divided into \(n\) triangles. Prove that one of the triangles can be used to completely cover a square with side length \(\frac{1}{n}\).
One corner square was cut from a chessboard. What is the smallest number of equal triangles that can be cut into this shape?