Each of the three cutlets should be fried in a pan on both sides for five minutes each side. Only two cutlets can fit onto the frying pan. Is it possible to fry all three cutlets more quickly than in 20 minutes (if the time to turn over and transfer the cutlets is neglected)?
There are two purses and one coin. Inside the first purse is one coin, and inside the second purse is one coin. How can this be?
A message is encrypted by replacing the letters of the source text with pairs of digits according to some table (known only to the sender and receiver) in which different letters of the alphabet correspond to different pairs of digits. The cryptographer was given the task to restore the encrypted text. In which case will it be easier for him to perform the task: if it is known that the first word of the second line is a “thermometer” or that the first word of the third line is “smother”? Justify your answer. (It is assumed that the cryptographic table is not known).
Around a table sit boys and girls. Prove that the number of pairs of neighbours of different sexes is even.
Could the difference of two integers multiplied by their product be equal to the number 1999?
a) There are 21 coins on a table with the tails side facing upwards. In one operation, you are allowed to turn over any 20 coins. Is it possible to achieve the arrangement were all coins are facing with the heads side upwards in a few operations?
b) The same question, if there are 20 coins, but you are allowed to turn over 19.
Two friends went simultaneously from A to B. The first went by bicycle, the second – by car at a speed five times faster than the first. Halfway along the route, the car was in an accident, and the rest of the way the motorist walked on foot at a speed half of the speed of the cyclist. Which of them arrived at B first?
Andrew drives his car at a speed of 60 km/h. He wants to travel every kilometre 1 minute faster. By how much should he increase his speed?
A tourist walked 3.5 hours, and for every period of time, in one hour, he walked exactly 5 km. Does this mean that his average speed is 5 km/h?
Prove that no straight line can cross all three sides of a triangle, at points away from the vertices.