Problems

Age
Difficulty
Found: 2618

Will thought of a number: 1, 2 or 3. You can ask him only one question, to which he can answer “yes”, “no” or “I do not know”. Can you guess the number by asking just one question?

Prove the following formulae are true: \[\begin{aligned} a^{n + 1} - b^{n + 1} &= (a - b) (a^n + a^{n-1}b + \dots + b^n);\\ a^{2n + 1} + b^{2n + 1} &= (a + b) (a^{2n} - a^{2n-1}b + a^{2n-2}b^2 - \dots + b^{2n}). \end{aligned}\]

For a given polynomial \(P (x)\) we describe a method that allows us to construct a polynomial \(R (x)\) that has the same roots as \(P (x)\), but all multiplicities of 1. Set \(Q (x) = (P(x), P'(x))\) and \(R (x) = P (x) Q^{-1} (x)\). Prove that

a) all the roots of the polynomial \(P (x)\) are the roots of \(R (x)\);

b) the polynomial \(R (x)\) has no multiple roots.

Prove that for \(n> 0\) the polynomial \(nx^{n + 1} - (n + 1) x^n + 1\) is divisible by \((x - 1)^2\).

Let it be known that all the roots of some equation \(x^3 + px^2 + qx + r = 0\) are positive. What additional condition must be satisfied by its coefficients \(p, q\) and \(r\) in order for it to be possible to form a triangle from segments whose lengths are equal to these roots?

Prove the equalities:

a) \(\overline{z+w} = \overline{z} + \overline{w}\); b) \(\overline{zw} = \overline{z} \overline{w}\); c) \(\overline{\frac{z}{w}} = \frac{\overline{z}}{\overline{w}}\); d) \(|\overline{z}| = |z|\); d) \(\overline{\overline{z}} = z\).

Prove the equalities:

a) \(z + \overline {z} = 2 \operatorname{Re} z\);

b) \(z - \overline {z} = 2i \operatorname{Im} z\);

c) \(\overline {z} z = |z|^2\).