Problems

Age
Difficulty
Found: 1974

Let \(n\) be an integer such that \(n^2\) is divisible by \(2\). Prove that \(n\) is divisible by \(2\).

Let \(n\) be an integer. Prove that if \(n^3\) is divisible by \(3\), then \(n\) is divisible by \(3\).

The numbers \(x\) and \(y\) satisfy \(x+3 = y+5\). Prove that \(x>y\).

The numbers \(x\) and \(y\) satisfy \(x+7 \geq y+8\). Prove that \(x>y\).

Prove that there are infinitely many natural numbers \(\{1,2,3,4,...\}\).

Prove that there are infinitely many prime numbers \(\{2,3,5,7,11,13...\}\).

Is it possible to colour the cells of a \(3\times 3\) board red and yellow such that there are the same number of red cells and yellow cells?

Prove the divisibility rule for \(25\): a number is divisible by \(25\) if and only if the number made by the last two digits of the original number is divisible by \(25\);
Can you come up with a divisibility rule for \(125\)?

A coin is tossed six times. How many different sequences of heads and tails can you get?

Each cell of a \(3 \times 3\) square can be painted either black, or white, or grey. How many different ways are there to colour in this table?