The surface of a \(3\times 3\times 3\) Rubik’s Cube contains 54 squares. What is the maximum number of squares we can mark, so that no marked squares share a vertex or are directly adjacent to another marked square?
Is it possible to place 12 identical coins along the edges of a square box so that touching each edge there were exactly: a) 2 coins, b) 3 coins, c) 4 coins, d) 5 coins, e) 6 coins, f) 7 coins.
You are allowed to place coins on top of one another. In the cases where it is possible, draw how this could be done. In the other cases, prove that doing so is impossible.
Each of the 1994 deputies in parliament slapped exactly one of his colleagues. Prove that it is possible to draw up a parliamentary commission of 665 people whose members did not clarify the relationship between themselves in the manner indicated above.
Eight schoolchildren solved \(8\) tasks. It turned out that \(5\) schoolchildren solved each problem. Prove that there are two schoolchildren, who solved every problem at least once.
If each problem is solved by \(4\) pupils, prove that it is not necessary to have two schoolchildren who would solve each problem.
The centres of all unit squares are marked in a \(10 \times 10\) chequered box (100 points in total). What is the smallest number of lines, that are not parallel to the sides of the square, that are needed to be drawn to erase all of the marked points?
Some squares on a chess board contain a chess piece. It is known that each row contains at least one chess piece, but that different rows all have different numbers of pieces. Prove that it is always possible to mark 8 pieces so that each row and each column of the board contains exactly one marked piece.
Prove that any convex polygon contains not more than \(35\) vertices with an angle of less than \(170^\circ\).
On the sides \(AB\), \(BC\) and \(AC\) of the triangle \(ABC\) points \(P\), \(M\) and \(K\) are chosen so that the segments \(AM\), \(BK\) and \(CP\) intersect at one point and \[\vec{AM} + \vec{BK}+\vec{CP} = 0\] Prove that \(P\), \(M\) and \(K\) are the midpoints of the sides of the triangle \(ABC\).
Prove that, in a circle of radius 10, you cannot place 400 points so that the distance between each two points is greater than 1.
A circle is covered with several arcs. These arcs can overlap one another, but none of them cover the entire circumference. Prove that it is always possible to select several of these arcs so that together they cover the entire circumference and add up to no more than \(720^{\circ}\).