There are 20 students in a class, and each one is friends with at least 14 others. Can you prove that there are four students in this class who are all friends?
Each of the three axes has one rotating pin and a fixed arrow. The gears are connected in series. On the first gear there are 33 teeth, on the second – 10, on the third – 7. On each tooth of the first gear one symbol or letter of the following string of letters and symbols is written in the clockwise direction in the following order:
A B V C D E F G H I J K L M N O P Q R S T U W X Y Z ! ? \(>\) \(<\) $ £ €
On the teeth of the second and third gears in increasing order the numbers 0 to 9 and 0 to 6 are written respectively in a clockwise direction. When the arrow of the first axis points to a letter, the arrows of the other two axes point to numbers.
The letters and symbols of the message are encrypted in sequence. Encryption is performed by rotating the first gear anti-clockwise until the first possible letter or symbol that can be encrypted is landed on by the arrow. At this point, the numbers indicated by the second and third arrows are consistently written out. At the beginning of the encryption, the 1st wheel points to the letter A, and the arrows of the 2nd and 3rd wheels to the number 0.
Encrypt the Slavic name OLIMPIADA.
A message is encrypted using numbers where each number corresponds to a different letter of the alphabet. Decipher the following encoded text:
1317247191772413816720713813920257178
A rectangular billiard with sides 1 and \(\sqrt {2}\) is given. From its angle at an angle of \(45 ^\circ\) to the side a ball is released. Will it ever get into one of the pockets? (The pockets are in the corners of the billiard table).
Prove that the following inequalities hold for the Brockard angle \(\varphi\):
a) \(\varphi ^{3} \le (\alpha - \varphi) (\beta - \varphi) (\gamma - \varphi)\) ;
b) \(8 \varphi^{3} \le \alpha \beta \gamma\) (the Jiff inequality).
Suppose that \(n \geq 3\). Are there n points that do not lie on one line, whose pairwise distances are irrational, and the areas of all of the triangles with vertices in them are rational?
Do there exist three points \(A\), \(B\) and \(C\) on the plane such that for any point \(X\) the length of at least one of the segments \(XA\), \(XB\) and \(XC\) is irrational?
Ten circles are marked on the circle. How many non-closed non-self-intersecting nine-point broken lines exist with vertices at these points?
A passenger left his things in an automatic storage room, and when he came to get his things, it turned out that he had forgotten the code. He only remembers that in the code there were the numbers 23 and 37. To open the room, you need to correctly type a five-digit number. What is the least number of codes you need to sort through in order to open the room for sure?
How many nine-digit numbers exist, the sum of the digits of which is even?