Problems

Age
Difficulty
Found: 1462

Draw a picture how Robinson used to tie the goat and the wolf in order for the goat to graze the grass in the shape of half a circle.

Draw a picture how Robinson used to tie the goat and the wolf in order for the goat to graze the grass in the shape of a young moon (see the picture below)

Draw a picture how Robinson used to tie the goat and the wolf in order for the goat to graze the grass in the shape of half a ring.

Nick has written in some order all the numbers \(1,2,...33\) at the vertices of a regular \(33\)-gon. His little sister Hannah assigned to each side of the \(33\)-gon the number equal to the sum of the numbers at the ends of that side. It turns out that Hannah obtained \(33\) consecutive numbers in certain order. Can you find an arrangement of numbers as written by Nick which lead to this situation?

Is it possible to arrange the numbers \(1,\, 2,\, ...,\, 50\) at the vertices and middles of the sides of a regular \(25\)-gon so that the sum of the three numbers at the ends and in the middle of each side is the same for all sides?

Jason has \(20\) red balls and \(14\) bags to store them. Prove that there is a bag which contains at least two balls.

One of the most useful tools for proving mathematical statements is the Pigeonhole principle. Here is one example: suppose that a flock of \(10\) pigeons flies into a set of \(9\) pigeonholes to roost. Prove that at least one of these \(9\) pigeonholes must have at least two pigeons in it.

Show the following: Pigeonhole principle strong form: Let \(q_1, \,q_2,\, . . . ,\, q_n\) be positive integers. If \(q_1+ q_2+ . . . + q_n - n + 1\) objects are put into \(n\) boxes, then either the \(1\)st box contains at least \(q_1\) objects, or the \(2\)nd box contains at least \(q_2\) objects, . . ., or the \(n\)th box contains at least \(q_n\) objects.
How can you deduce the usual Pigeonhole principle from this statement?

Let \(r\) be a rational number and \(x\) be an irrational number (i.e. not a rational one). Prove that the number \(r+x\) is irrational.
If \(r\) and \(s\) are both irrational, then must \(r+s\) be irrational as well?

Definition: We call a number \(x\) rational if there exist two integers \(p\) and \(q\) such that \(x=\frac{p}{q}\). We assume that \(p\) and \(q\) are coprime.
Prove that \(\sqrt{2}\) is not rational.