A block of cheese comes in packaging with parallel lines of different colours printed on it. If you cut along the red lines then you will get 5 slices of cheese, if you cut along the yellow lines then there will be 7 slices, and along the green lines you will get 11 slices. How many slices will you get if you cut along the lines of all three colours?
The product of two natural numbers, each of which is not divisible by 10, is equal to 1000. Find the sum of these two numbers.
An old analogue clock speeds up by 9 minutes after 24 hours. If you went to sleep at 22:00 and set the correct time on the clock, then for what time should the alarm be set if you want it to go off at exactly 6:00? Explain your answer.
A digital clock shows the time in hours and minutes (for example, 16:15). While practising his counting, Pinocchio finds the sum of all the numbers on this clock (for example, \(1+6+1+5=13\)). Find the time at which the sum of these numbers will be at its maximum.
Find \(x^3 +y^3\) if \(x+y=5\) and \(x+y+x^2 y +xy^2 =24\).
Along the path between Fiona’s and Jane’s house there is a row of flowers: 15 peonies and 15 tulips in a random order. Before visiting Fiona’s house, Jane started watering all of the plants from the beginning of the row. After the 10th tulip the water finished and 10 flowers were left unwatered. The next day, before visiting Jane’s house, Fiona started picking flowers for a bouquet starting from the end of the row. After picking the 6th tulip, she decided that the bouquet was big enough. How many flowers were left growing beside the path?
In a herd consisting of horses and camels (some with one hump and some with two) there are a total of 200 humps. How many animals are in the herd, if the number of horses is equal to the number of camels with two humps?
Compute the following: \[\frac{(2001\times 2021 +100)(1991\times 2031 +400)}{2011^4}.\]
After a circus came back from its country-wide tour, relatives of the animal tamer asked him questions about which animals travelled with the circus.
“Where there tigers?”
“Yes, in fact, there were seven times more tigers than non-tigers.”
“What about monkeys?”
“Yes, there were seven times less monkeys than non-monkeys.”
“Where there any lions?”
What is the answer he gave to this last question?
The graph of the function \(y=kx+b\) is shown on the diagram below. Compare \(|k|\) and \(|b|\).