There are \(n\) points on the plane. How many lines are there with endpoints at these points?
Write in terms of prime factors the numbers 111, 1111, 11111, 111111, 1111111.
Let \(m\) and \(n\) be integers. Prove that \(mn(m + n)\) is an even number.
The numbers \(1, 2,\dots ,99\) are written on 99 cards. Then the cards are shuffled and placed with the number facing down. On the blank side of the cards, the numbers \(1, 2, \dots , 99\) are once again written.
The sum of the two numbers on each card are calculated, and the product of these 99 summations is worked out. Prove that the end result will be an even number.
Prove that any \(n\) numbers \(x_1,\dots , x_n\) that are not pairwise congruent modulo \(n\), represent a complete system of residues, modulo \(n\).
Write the following rational numbers in the form of decimal fractions: a) \(\frac {1}{7}\); b) \(\frac {2}{7}\); c) \(\frac{1}{14}\); d) \(\frac {1}{17}\).
Let the number \(\alpha\) be given by the decimal:
a) \(0.101001000100001000001 \dots\);
b) \(0.123456789101112131415 \dots\).
Will this number be rational?
There are 4 weights and scales. How many loads that are different by weight can be accurately weighed using these weights, if
a) weights can be placed only on one side of the scales;
b) weights can be placed on both sides of the scales?
Will thought of a number: 1, 2 or 3. You can ask him only one question, to which he can answer “yes”, “no” or “I do not know”. Can you guess the number by asking just one question?
Prove the following formulae are true: \[\begin{aligned} a^{n + 1} - b^{n + 1} &= (a - b) (a^n + a^{n-1}b + \dots + b^n);\\ a^{2n + 1} + b^{2n + 1} &= (a + b) (a^{2n} - a^{2n-1}b + a^{2n-2}b^2 - \dots + b^{2n}). \end{aligned}\]