A box contains 111 red, blue, green, and white marbles. It is known that if we remove 100 marbles from the box, without looking, we will always have removed at least one marble of each colour. What is the minimum number of marbles we need to remove to guarantee that we have removed marbles of 3 different colours?
It is known that \(a > 1\). Is it always true that \(\lfloor \sqrt{\lfloor \sqrt{a}\rfloor }\rfloor = \lfloor \sqrt{4}{a}\rfloor\)?
When 200 sweets are randomly distributed to a class of schoolchildren, there will always be at least two children who receive the same number of sweets or even no sweets at all. What is the minimum number of children in this class?
A mix of boys and girls are standing in a circle. There are 20 children in total. It is known that each boys’ neighbour in the clockwise direction is a child wearing a blue T-shirt, and that each girls’ neighbour in the anticlockwise direction is a child wearing a red T-shirt. Is it possible to uniquely determine how many boys there are in the circle?
In a \(10 \times 10\) square, all of the cells of the upper left \(5 \times 5\) square are painted black and the rest of the cells are painted white. What is the largest number of polygons that can be cut from this square (on the boundaries of the cells) so that in every polygon there would be three times as many white cells than black cells? (Polygons do not have to be equal in shape or size.)
For the anniversary of the London Mathematical Olympiad, the mint coined three commemorative coins. One coin turned out correctly, the second coin on both sides had two heads, and the third had tails on both sides. The director of the mint, without looking, chose one of these three coins and tossed it at random. She got heads. What is the probability that the second side of this coin also has heads?
In a convex hexagon, independently of each other, two random diagonals are chosen. Find the probability that these diagonals intersect inside the hexagon (inside – that is, not at the vertex).
The shooter shoots at 3 targets until he shoots everything. The probability of a hit with one shot is \(p\).
a) Find the probability that he needs exactly 5 shots.
b) Find the mathematical expectation of the number of shots.
The television game “What? Where? When?” consists of a team of “experts” trying to solve 13 questions (or sectors), numbered from 1 to 13, that are thought up and sent in by the viewers of the programme. Envelopes with the questions are selected in turn in random order with the help of a spinning top with an arrow. If this sector has already come up previously, and the envelope is no longer there, then the next clockwise sector is played. If it is also empty, then the next one is played, etc., until there is a non-empty sector.
Before the break, the players played six sectors.
a) What is more likely: that sector number 1 has already been played or that sector number 8 has already been plated?
b) Find the probability that, before the break, six sectors with numbers from 1 to 6 were played consecutively.
In one box, there are two pies with mushrooms, in another box there are two with cherries and in the third one, there is one with mushrooms and one with cherries. The pies look and weigh the same, so it’s not known what is in each one. The grandson needs to take one pie to school. The grandmother wants to give him a pie with cherries, but she is confused herself and can only determine the filling by breaking the pie, but the grandson does not want a broken pie, he wants a whole one.
a) Show that the grandmother can act so that the probability of giving the grandson a whole pie with cherries will be equal to \(2/3\).
b) Is there a strategy in which the probability of giving the grandson a whole pie with cherries is higher than \(2/3\)?