Can I replace the letters with numbers in the puzzle \(RE \times CTS + 1 = CE \times MS\) so that the correct equality is obtained (different letters need to be replaced by different numbers, and the same letters must correspond to the same digits)?
At the vertices of the hexagon \(ABCDEF\) (see Fig.) There were 6 identical balls: at \(A\) – one with mass 1 g, at \(B\) – 2 g, ..., at \(F\) – 6 g. Callum changed the places of two balls in opposite vertices. A set of weighing scales with 2 plates is available, which let you know which plate contains the balls of greater mass. How, in one weighing, can it be determined which balls were rearranged?
Pinocchio correctly solved a problem, but stained his notebook. \[(\bullet \bullet + \bullet \bullet+1)\times \bullet= \bullet \bullet \bullet\]
Under each blot lies the same number, which is not equal to zero. Find this number.
Seven coins are arranged in a circle. It is known that some four of them, lying in succession, are fake and that every counterfeit coin is lighter than a real one. Explain how to find two counterfeit coins from one weighing on scales without any weights. (All counterfeit coins weigh the same.)
Four people discussed the answer to a task.
Harry said: “This is the number 9”.
Ben: “This is a prime number.”
Katie: “This is an even number.”
And Natasha said that this number is divisible by 15.
One boy and one girl answered correctly, and the other two made a mistake. What is the actual answer to the question?
Peter recorded an example of an addition on a board, after which he replaced some digits with letters, with the same figures being replaced with the same letters, and different figures with different letters. He did it such that he was left with the sum: \(CROSS + 2011 = START\). Prove that Peter made a mistake.
Can 100 weights of masses 1, 2, 3, ..., 99, 100 be arranged into 10 piles of different masses so that the following condition is fulfilled: the heavier the pile, the fewer weights in it?
Matt, Conrad and Louie ate some sweets. Their surnames are Smith, Jones and Cooper. Smith ate 2 sweets fewer than Matt, Jones – 2 sweets fewer than Conrad, and Conrad ate more than anyone. Which of them has which last name?
Going to school, Michael found everything he needed under the pillow, under the sofa, on the table or under the table. The items he needed to find were a notebook, a cheat sheet, an mp3 player and sneakers. Under the table, he did not find a notebook or an mp3 player. His cheat sheet never lies on the floor. The mp3 player was neither on the table nor under the sofa. What was lying where, if there was only one object in each of the places?
When cleaning her children’s room, a mother found \(9\) socks. In a group of any \(4\) of the socks at least two belonged to the same child. In a group of any \(5\) of the socks no more than \(3\) had the same owner. How many children are there in the room and how many socks belong to each child?