Without calculating the answer to \(2^{30}\), prove that it contains at least two identical digits.
Write the following rational numbers in the form of decimal fractions: a) \(\frac {1}{7}\); b) \(\frac {2}{7}\); c) \(\frac{1}{14}\); d) \(\frac {1}{17}\).
Let the number \(\alpha\) be given by the decimal:
a) \(0.101001000100001000001 \dots\);
b) \(0.123456789101112131415 \dots\).
Will this number be rational?
Prove that if \((m, 10) = 1\), then there is a repeated unit \(E_n\) that is divisible by \(m\). Will there be infinitely many repeated units?
There are 4 weights and scales. How many loads that are different by weight can be accurately weighed using these weights, if
a) weights can be placed only on one side of the scales;
b) weights can be placed on both sides of the scales?
Will thought of a number: 1, 2 or 3. You can ask him only one question, to which he can answer “yes”, “no” or “I do not know”. Can you guess the number by asking just one question?
Prove the following formulae are true: \[\begin{aligned} a^{n + 1} - b^{n + 1} &= (a - b) (a^n + a^{n-1}b + \dots + b^n);\\ a^{2n + 1} + b^{2n + 1} &= (a + b) (a^{2n} - a^{2n-1}b + a^{2n-2}b^2 - \dots + b^{2n}). \end{aligned}\]
Derive from the theorem in question 61013 that \(\sqrt{17}\) is an irrational number.
Prove that for \(n> 0\) the polynomial \(nx^{n + 1} - (n + 1) x^n + 1\) is divisible by \((x - 1)^2\).
An iterative polyline serves as a geometric interpretation of the iteration process. To construct it, on the \(Oxy\) plane, the graph of the function \(f (x)\) is drawn and the bisector of the coordinate angle is drawn, as is the straight line \(y = x\). Then on the graph of the function the points \[A_0 (x_0, f (x_0)), A_1 (x_1, f (x_1)), \dots, A_n (x_n, f (x_n)), \dots\] are noted and on the bisector of the coordinate angle – the points \[B_0 (x_0, x_0), B_1 (x_1, x_1), \dots , B_n (x_n, x_n), \dots.\] The polygonal line \(B_0A_0B_1A_1 \dots B_nA_n \dots\) is called iterative.
Construct an iterative polyline from the following information:
a) \(f (x) = 1 + x/2\), \(x_0 = 0\), \(x_0 = 8\);
b) \(f (x) = 1/x\), \(x_0 = 2\);
c) \(f (x) = 2x - 1\), \(x_0 = 0\), \(x_0 = 1{,}125\);
d) \(f (x) = - 3x/2 + 6\), \(x_0 = 5/2\);
e) \(f (x) = x^2 + 3x - 3\), \(x_0 = 1\), \(x_0 = 0{,}99\), \(x_0 = 1{,}01\);
f) \(f (x) = \sqrt{1 + x}\), \(x_0 = 0\), \(x_0 = 8\);
g) \(f (x) = x^3/3 - 5x^2/x + 25x/6 + 3\), \(x_0 = 3\).