Prove the magic trick for the number \(1089 = 33^2\): if you take any \(3\)-digit number \(\overline{abc}\) with digits coming in strictly descending order and subtract from it the number obtained by reversing the digits of the original number \(\overline{abc} - \overline{cba}\) you get another \(3\)-digit number, call it \(\overline{xyz}\). Then, no matter which number you started with, the sum \(\overline{xyz} + \overline{zyx} = 1089\).
Recall that a number \(\overline{abc}\) is divisible by \(11\) if and only if \(a-b+c\) also is.
We want to wrap \(12\) Christmas presents in different coloured paper. We have \(6\) different patterns of paper and we want to use each one exactly twice. In how many ways can we do this?
Mr Roberts wants to place his little stone sculptures of vegetables on the different shelves around the house. He has \(17\) sculptures in total and three shelves that can fit \(7\), \(8\) and \(2\) sculptures respectively. In how many ways can he do this?
The order of sculptures on the shelf does not matter.
It is easy to construct one equilateral triangle using three identical matches. Is it possible to construct four equilateral triangles by adding just three more matches identical to the original ones?
There are \(24\) children in the class and some of them are friends with each other. The following rules apply:
If someone (say Alice) is a friend with someone else (say Bob), then the second student (Bob) is also a friend with the first (Alice).
If Alice is friend with Bob and Bob is friend with Claire, then Alice is also friend with Claire.
Find a misconception in the following statement: under the above conditions Alice is friend with herself.
Theorem: All people have the same eye color.
"Proof" by induction: This is clearly true for one person.
Now, assume we have a finite set of people, denote them as \(a_1,\, a_2,\, ...,\,a_n\), and the inductive hypothesis is true for all smaller sets. Then if we leave aside the person \(a_1\), everyone else \(a_2,\, a_3,\,...,\,a_n\) has the same color of eyes and if we leave aside \(a_n\), then all \(a_1,\, a_2,\,a_3,...,\,a_{n-1}\) also have the same color of eyes. Thus any \(n\) people have the same color of eyes.
Find a mistake in this "proof".
Let’s prove that \(1\) is the largest natural number.
Let \(n\) be the largest natural number. Then, \(n^2\), being a natural number, is less than or equal to \(n\). Therefore \(n^2-n=n(n-1)\leq 0\). Hence, \(0\leq n\leq 1\). Therefore \(n=1\).
Find the mistake in the sequence of equalities: \(-1=(-1)^{\frac{2}{2}}=((-1)^2)^{\frac{1}{2}}=1^{\frac{1}{2}}=1\).
Theorem: If we mark \(n\) points on a circle and connect each point to every other point by a straight line, the lines divide the interior of the circle is into is \(2n-1\) regions.
"Proof": First, let’s have a look at the smallest natural numbers.
When \(n=1\) there is one region (the whole disc).
When \(n=2\) there are two regions (two half-discs).
When \(n=3\) there are \(4\) regions (three lune-like regions and one triangle in the middle).
When \(n=4\) there are \(8\) regions, and if you’re still not convinced then try \(n=5\) and you’ll find \(16\) regions if you count carefully.
Our proof in general will be by induction on \(n\). Assuming the theorem is true for \(n\) points, consider a circle with \(n+1\) points on it. Connecting \(n\) of them together in pairs produces \(2n-1\) regions in the disc, and then connecting the remaining point to all the others will divide the previous regions into two parts, thereby giving us \(2\times (2n-1)=2n\) regions.
Let’s "prove" that the number \(1\) is a multiple of \(3\). We will use the symbol \(\equiv\) to denote "congruent modulo \(3\)". Thus, what we need to prove is that \(1\equiv 0\) modulo \(3\). Let’s see: \(1\equiv 4\) modulo \(3\) means that \(2^1\equiv 2^4\) modulo \(3\), thus \(2\equiv 16\) modulo \(3\), however \(16\) gives the remainder \(1\) after division by \(3\), thus we get \(2\equiv 1\) modulo \(3\), next \(2-1\equiv 1-1\) modulo \(3\), and thus \(1\equiv 0\) modulo \(3\). Which means that \(1\) is divisible by \(3\).