Does there exist a function
When 200 sweets are randomly distributed to a class of schoolchildren, there will always be at least two children who receive the same number of sweets or even no sweets at all. What is the minimum number of children in this class?
A mix of boys and girls are standing in a circle. There are 20 children in total. It is known that each boys’ neighbour in the clockwise direction is a child wearing a blue T-shirt, and that each girls’ neighbour in the anticlockwise direction is a child wearing a red T-shirt. Is it possible to uniquely determine how many boys there are in the circle?
In a
A firm recorded its expenses in pounds for 100 items, creating a list of 100 numbers (with each number having no more than two decimal places). Each accountant took a copy of the list and found an approximate amount of expenses, acting as follows. At first, he arbitrarily chose two numbers from the list, added them, discarded the sum after the decimal point (if there was anything) and recorded the result instead of the selected two numbers. With the resulting list of 99 numbers, he did the same, and so on, until there was one whole number left in the list. It turned out that in the end all the accountants ended up with different results. What is the largest number of accountants that could work in the company?
An abstract artist took a wooden
a) There is an unlimited set of cards with the words “abc”, “bca”, “cab” written. Of these, the word written is determined according to this rule. For the initial word, any card can be selected, and then on each turn to the existing word, you can either add on a card to the left or to the right, or cut the word anywhere (between the letters) and put a card there. Is it possible to make a palindrome with this method?
b) There is an unlimited set of red cards with the words “abc”, “bca”, “cab” and blue cards with the words “cba”, “acb”, “bac”. Using them, according to the same rules, a palindrome was made. Is it true that the same number of red and blue cards were used?
A cubic polynomial
For the anniversary of the London Mathematical Olympiad, the mint coined three commemorative coins. One coin turned out correctly, the second coin on both sides had two heads, and the third had tails on both sides. The director of the mint, without looking, chose one of these three coins and tossed it at random. She got heads. What is the probability that the second side of this coin also has heads?
In a convex hexagon, independently of each other, two random diagonals are chosen. Find the probability that these diagonals intersect inside the hexagon (inside – that is, not at the vertex).