Find all pairs of whole numbers \((x,y)\) so that this equation is true: \(xy = y+1\).
After Albert discovered the previous rule, he began looking at differences of squares of consecutive odd numbers. He found the difference between \(1^2\) and \(3^2\) is \(8\), the difference between \(3^2\) and \(5^2\) is \(16\), the difference between \(5^2\) and \(7^2\) is \(24\), and that the difference between \(7^2\) and \(9^2\) is \(32\). What is the rule now? Can you prove it?
Show that for any two positive real numbers \(x,y\) it is true that \(x^2+y^2 \ge 2xy\).
A number \(n\) is an integer such that \(n\) is not divisible by \(3\) or by \(2\). Show that \(n^2-1\) is divisible by \(24\).
Find all pairs of integers \((x,y)\) so that the following equation is true \(xy = y+x\).
Calculate the following squares in the shortest possible way (without
a calculator or any other device):
a) \(1001^2\) b) \(9998^2\) c) \(20003^2\) d) \(497^2\)
The perimeter of the triangle \(\triangle ABC\) is \(10\). Let \(D,E,F\) be the midpoints of the segments \(AB,BC,AC\) respectively. What is the perimeter of \(\triangle DEF\)?
Let \(\triangle ABC\) be a triangle and \(D\) be a point on the edge \(BC\) so that the segment \(AD\) bisects the angle \(\angle BAC\). Show that \(\frac{|AB|}{|BD|}=\frac{|AC|}{|CD|}\).
Show that if \(1+2+\dots+n = \frac{n(n+1)}{2}\), then \(1+2+\dots+(n+1) = \frac{(n+1)((n+1)+1)}{2}\).