Problems

Age
Difficulty
Found: 1517

In 10 boxes there are pencils (there are no empty boxes). It is known that in different boxes there is a different number of pencils, and in each box, all pencils are of different colors. Prove that from each box you can choose a pencil so that they will all be of different colors.

Which numbers can stand in place of the letters in the equality \(AB \times C = DE\), if different letters denote different numbers and from left to right the numbers are written in ascending order?

There are 40 weights of weights of 1 g, 2 g, ..., 40 grams. Of these, 10 weights of even weight were chosen and placed on the left hand side of the scales. Then we selected 10 weights of odd weight and put it on the right hand side of the scales. The scales were balanced. Prove that on one of the bowls of the scales there are two weights with a mass difference of 20 g.

Mark has 1000 identical cubes, each of which has one pair of opposite faces which are coloured white, another pair which are blue and a third pair that are red. He made a large \(10 \times 10 \times 10\) cube from them, joining cubes to one another which have the same coloured faces. Prove that the large cube has a face which is solidly one colour.

Four numbers (from 1 to 9) have been used to create two numbers with four-digits each. These two numbers are the maximum and minimum numbers, respectively, possible. The sum of these two numbers is equal to 11990. What could the two numbers be?

There are 100 boxes numbered from 1 to 100. In one box there is a prize and the presenter knows where the prize is. The spectator can send the presented a pack of notes with questions that require a “yes” or “no” answer. The presenter mixes the notes in a bag and, without reading out the questions aloud, honestly answers all of them. What is the smallest number of notes you need to send to know for sure where the prize is?

At a round table, 30 people are sitting – knights and liars (knights always tell the truth, and liars always lie). It is known that each of them at that table has exactly one friend, and for each knight this friend is a liar, and for a liar this friend is a knight (friendship is always mutual). To the question “Does your friend sit next to you?” those in every other seat answered “yes”. How many of the others could also have said “Yes”?

In the equality \(TIME + TICK = SPIT\), replace the same letters with the same numbers, and different letters with different digits so that the word \(TICK\) is as small as possible (there are no zeros among the digits).

Four children said the following about each other.

Mary: Sarah, Nathan and George solved the problem.

Sarah: Mary, Nathan and George didn’t solve the problem.

Nathan: Mary and Sarah lied.

George: Mary, Sarah and Nathan told the truth.

How many of the children actually told the truth?

On a board there are written four three-digit numbers, totaling 2012. To write them all, only two different digits were used.

Give an example of such numbers.