On a table there are 2022 cards with the numbers 1, 2, 3, ..., 2022. Two players take one card in turn. After all the cards are taken, the winner is the one who has a greater last digit of the sum of the numbers on the cards taken. Find out which of the players can always win regardless of the opponent’s strategy, and also explain how he should go about playing.
Two players in turn paint the sides of an \(n\)-gon. The first one can paint the side that borders either zero or two colored sides, the second – the side that borders one painted side. The player who can not make a move loses. At what \(n\) can the second player win, no matter how the first player plays?
The case of Brown, Jones and Smith is being considered. One of them committed a crime. During the investigation, each of them made two statements. Brown: “I did not do it. Jones did not do it. " Smith: “I did not do it. Brown did it. “Jones:" Brown did not do it. This was done by Smith. “Then it turned out that one of them had told the truth in both statements, another had lied both times, and the third had told the truth once, and he had lied once. Who committed the crime?
Jane wrote another number on the board. This time it was a two-digit number and again it did not include digit 5. Jane then decided to include it, but the number was written too close to the edge, so she decided to t the 5 in between the two digits. She noticed that the resulting number is 11 times larger than the original. What is the sum of digits of the new number?
a) Find the biggest 6-digit integer number such that each digit, except for the two on the left, is equal to the sum of its two left neighbours.
b) Find the biggest integer number such that each digit, except for the rst two, is equal to the sum of its two left neighbours. (Compared to part (a), we removed the 6-digit number restriction.)
Matt built a simple wooden hut to protect himself from the rain. From the side the hut looks like a right triangle with the right angle at the top. The longer part of the roof has 20 ft and the shorter one has 15 ft. What is the height of the hut in feet?
Tile a \(5\times6\) rectangle in an irreducible way by laying \(1\times2\) rectangles.
Does there exist an irreducible tiling with \(1\times2\) rectangles of
(a) \(4\times 6\) rectangle;
(b) \(6\times 6\) rectangle?
Irreducibly tile a floor with \(1\times2\) tiles in a room that is
(a) \(5\times8\); (b) \(6\times8\).
Having mastered tiling small rooms, Robinson wondered if he could tile big spaces, and possibly very big spaces. He wondered if he could tile the whole plane. He started to study the tiling, which can be continued infinitely in any direction. Can you help him with it?
Tile the whole plane with the following shapes: