In each cell of a board of size \(5\times5\) a cross or a nought is placed, and no three crosses are positioned in a row, either horizontally, vertically or diagonally. What is the largest number of crosses on the board?
An after school club is attended by 4 boys from class 7A, and four from class 7B. Of those who attended three were named Ben, three were named Will, and two were named Tom.
Is it possible for it to be the case that each boy had at least one namesake classmate who attended the club?
The triangle visible in the picture is equilateral. The hexagon inside is a regular hexagon. If the area of the whole big triangle is \(18\), find the area of the small blue triangle.
On the left there is a circle inscribed in a square of side 1. On the right there are 16 smaller, identical circles, which all together fit inside a square of side 1. Which area is greater, the yellow or the blue one?
Izzy wrote a correct equality on the board: \(35 + 10 - 41 = 42 + 12 - 50\), and then subtracted 4 from both parts: \(35 + 10 - 45 = 42 + 12 - 54\). She noticed that on the left hand side of the equation all of the numbers are divisible by 5, and on the right hand side by 6. Then she took 5 outside of the brackets on the left hand side and 6 on the right hand side and got \(5(7 + 2 - 9)4 = 6(7 + 2 - 9)\). Having simplified both sides by a common multiplier, Izzy found that \(5 = 6\). Where did she go wrong?
A carpet of size 4 m by 4 m has had 15 holes made in it by a moth. Is it always possible to cut out a 1 m \(\times\) 1 m area of carpet that doesn’t contain any holes? The holes are considered to be points.
The natural number \(a\) was increased by 1, and its square increased by 1001. What is \(a\)?
In a basket, there are 30 red and green apples. Among any 12 apples there is at least one red one, and among any 20 apples there is at least one green one. How many red apples and how many green apples are there in the basket?
The grandad is twice as strong as the grandma, the grandma is three times stronger than the granddaughter, the granddaughter is four times stronger than the dog, the dog is five times stronger than the cat and the cat is six times stronger than the mouse. The grandad, the grandma, the granddaughter, the dog and the cat together with the mouse can pull out the pumpkin from the ground, which they cannot do without the mouse. How many mice should be summoned so that they can pull out the pumpkin themselves?
Is it possible to cut out such a hole in a sheet of paper through which a person could climb through?