Problems

Age
Difficulty
Found: 1936

The angle at the top of a crane is 20. How will the magnitude of this angle change when looking at the crane with binoculars which triple the size of everything?

What is the minimum number of squares that need to be marked on a chessboard, so that:

1) There are no horizontally, vertically, or diagonally adjacent marked squares.

2) Adding any single new marked square breaks rule 1.

We are given 101 rectangles with integer-length sides that do not exceed 100.

Prove that amongst them there will be three rectangles A,B,C, which will fit completely inside one another so that ABC.

A staircase has 100 steps. Vivian wants to go down the stairs, starting from the top, and she can only do so by jumping down and then up, down and then up, and so on. The jumps can be of three types – six steps (jumping over five to land on the sixth), seven steps or eight steps. Note that Vivian does not jump onto the same step twice. Will she be able to go down the stairs?

10 friends sent one another greetings cards; each sent 5 cards. Prove that there will be two friends who sent cards to one another.

A gang contains 101 gangsters. The whole gang has never taken part in a raid together, but every possible pair of gangsters have taken part in a raid together exactly once. Prove that one of the gangsters has taken part in no less than 11 different raids.

A village infant school has 20 pupils. If we pick any two pupils they will have a shared granddad.

Prove that one of the granddads has no fewer than 14 grandchildren who are pupils at this school.

Initially, on each cell of a 1×n board a checker is placed. The first move allows you to move any checker onto an adjacent cell (one of the two, if the checker is not on the edge), so that a column of two pieces is formed. Then one can move each column in any direction by as many cells as there are checkers in it (within the board); if the column is on a non-empty cell, it is placed on a column standing there and unites with it. Prove that in n1 moves you can collect all of the checkers on one square.