Problems

Age
Difficulty
Found: 1936

Cutting into four parts. Cut each of the figures below into four equal parts (you can cut along the sides and diagonals of cells).

image

We are looking for the correct statement. In a notebook one hundred statements are written:

1) There is exactly one false statement in this notebook.

2) There are exactly two false statements in this notebook.

...

100) There are exactly one hundred false statements in this notebook.

Which of these statements is true, if it is known that only one is true?

Solve the rebus \(AC \times CC \times K = 2002\) (different letters correspond to different integers and vice versa).

Can the equality \(K \times O \times T\) = \(U \times W \times E \times H \times S \times L\) be true if instead of the letters in it we substitute integers from 1 to 9 (different letters correspond to different numbers)?

Rebus. Solve the numerical rebus \(AAAA-BBB + SS-K = 1234\) (different letters correspond to different numbers, but the same letters each time correspond to the same numbers)

What is the maximum number of kings, that cannot capture each other, which can be placed on a chessboard of size \(8 \times 8\) cells?

Petya and Misha play such a game. Petya takes in each hand a coin: one – 10 pence, and the other – 15. After that, the contents of the left hand are multiplied by 4, 10, 12 or 26, and the contents of the right hand – by 7, 13, 21 or 35. Then Petya adds the two results and tells Misha the result. Can Misha, knowing this result, determine which hand – the right or left – contains the 10 pence coin?

The evil stepmother, leaving for the ball, gave Cinderella a bag in which rice and cous-cous were mixed, and ordered for them to be sorted. When Cinderella was leaving for the ball, she left three bags: one was rice, the other – cous-cous, and in the third – an unsorted mixture. In order not to confuse the bags, Cinderella attached to each of them a sign saying: “Rice”, “Cous-cous” and “Mixture”.

The stepmother returned from the ball first and deliberately swapped all the signs in such a way that on every sack there was an incorrect sign. The Fairy Godmother managed to warn Cinderella that now none of the signs on the bags are true. Then Cinderella took out only one single grain from one sack and, looking at it, immediately worked out what was in each bag. How did she do it?

In a bookcase, there are four volumes of the collected works of Astrid Lindgren, with each volume containing 200 pages. A worm who lives on this bookshelf has gnawed its way from the first page of the first volume to the last page of the fourth volume. Through how many pages has the worm gnawed its way through?

There are some incorrect weighing scales, a bag of cereal and a correct weight of 1 kg. How can you weigh on these scales 1 kg of cereals?