Problems

Age
Difficulty
Found: 1936

How many ways can you build a closed line whose vertices are the vertices of a regular hexagon (the line can be self-intersecting)?

How many different four-digit numbers, divisible by 4, can be made up of the digits 1, 2, 3 and 4,

a) if each number can occur only once?

b) if each number can occur several times?

How many integers are there from 0 to 999999, in the decimal notation of which there are no two identical numbers next to each other?

Find the number of rectangles made up of the cells of a board with \(m\) horizontals and \(n\) verticals that contain a cell with the coordinates \((p, q)\).

Prove that there is no graph with five vertices whose degrees are equal to 4, 4, 4, 4, 2.

Prove that a graph, in which every two vertices are connected by exactly one simple path, is a tree.

Prove that, in a tree, every two vertices are connected by exactly one simple path.

Prove that there is a vertex in the tree from which exactly one edge emerges (such a vertex is called a hanging top).

At a conference there are 50 scientists, each of whom knows at least 25 other scientists at the conference. Prove that is possible to seat four of them at a round table so that everyone is sitting next to people they know.

Each of the edges of a complete graph consisting of 6 vertices is coloured in one of two colours. Prove that there are three vertices, such that all the edges connecting them are the same colour.