Problems

Age
Difficulty
Found: 2332

In a circle, each member has one friend and one enemy. Prove that

a) the number of members is even.

b) the circle can be divided into two neutral circles.

Out of a whole 100-vertex graph, 98 edges were removed. Prove that the remaining ones were connected.

The faces of a polyhedron are coloured in two colours so that the neighbouring faces are of different colours. It is known that all of the faces except for one have a number of edges that is a multiple of 3. Prove that this one face has a multiple of 3 edges.

In a country, each two cities are connected with a one-way road.

Prove that there is a city from which you can drive to any other whilst travelling along no more than two roads.

Prove that in a bipartite planar graph \(E \geq 2F\), if \(E \geq 2\) (\(E\) is the number of edges, \(F\) is the number of regions).