Problems

Age
Difficulty
Found: 2586

101 random points are chosen inside a unit square, including on the edges of the square, so that no three points lie on the same straight line. Prove that there exist some triangles with vertices on these points, whose area does not exceed 0.01.

The function \(f (x)\) is defined on the positive real \(x\) and takes only positive values. It is known that \(f (1) + f (2) = 10\) and \(f(a+b) = f(a) + f(b) + 2\sqrt{f(a)f(b)}\) for any \(a\) and \(b\). Find \(f (2^{2011})\).

On a chessboard, \(n\) white and \(n\) black rooks are arranged so that the rooks of different colours cannot capture one another. Find the greatest possible value of \(n\).

There are a thousand tickets with numbers 000, 001, ..., 999 and a hundred boxes with the numbers 00, 01, ..., 99. A ticket is allowed to be dropped into a box if the number of the box can be obtained from the ticket number by erasing one of the digits. Is it possible to arrange all of the tickets into 50 boxes?

2011 numbers are written on a blackboard. It turns out that the sum of any of these written numbers is also one of the written numbers. What is the minimum number of zeroes within this set of 2011 numbers?

Does there exist a real number \({\alpha}\) such that the number \(\cos {\alpha}\) is irrational, and all the numbers \(\cos 2{\alpha}\), \(\cos 3{\alpha}\), \(\cos 4{\alpha}\), \(\cos 5{\alpha}\) are rational?

Going to school, Michael found everything he needed under the pillow, under the sofa, on the table or under the table. The items he needed to find were a notebook, a cheat sheet, an mp3 player and sneakers. Under the table, he did not find a notebook or an mp3 player. His cheat sheet never lies on the floor. The mp3 player was neither on the table nor under the sofa. What was lying where, if there was only one object in each of the places?