Prove that if \(p\) is a prime number, then \((a + b)^p - a^p - b^p\) is divisible by \(p\) for any integers \(a\) and \(b\).
Prove that the number \(\sqrt {2} + \sqrt {3} + \sqrt {5} + \sqrt {7} + \sqrt {11} + \sqrt {13} + \sqrt {17}\) is irrational.
a) One person had a basement illuminated by three electric bulbs. Switches of these bulbs are located outside the basement, so that having switched on any of the switches, the owner has to go down to the basement to see which lamp switches on. One day he came up with a way to determine for each switch which bulb it switched on, descending into the basement exactly once. What is the method?
b) If he goes down to the basement exactly twice, how many bulbs can he identify the switches for?
Peter thought of a number between 1 to 200. What is the fewest number of questions for which you can guess the number if Peter answers
a) “yes ” or “no”;
b) “yes”, “no” or “I do not know”
for every question?
There are 4 coins. Of the four coins, one is fake (it differs in weight from the real ones, but it is not known if it is heavier or lighter). Find the fake coin using two weighings on scales without weights.
Draw all of the stairs made from four bricks in descending order, starting with the steepest \((4, 0, 0, 0)\) and ending with the shallowest \((1, 1, 1, 1)\).
A frog jumps over the vertices of the triangle \(ABC\), moving each time to one of the neighbouring vertices.
How many ways can it get from \(A\) to \(A\) in \(n\) jumps?
Let \((1 + \sqrt {2} + \sqrt {3})^n = p_n + q_n \sqrt {2} + r_n \sqrt {3} + s_n \sqrt {6}\) for \(n \geq 0\). Find:
a) \(\lim \limits_ {n \to \infty} {\frac {p_n} {q_n}}\); b) \(\lim \limits_ {n \to \infty} {\frac {p_n} {r_n}}\); c) \(\lim \limits_ {n \to \infty} {\frac {p_n} {s_n}}\);
Find the generating functions of the sequences of Chebyshev polynomials of the first and second kind: \[F_T(x,z) = \sum_{n=0}^{\infty}T_n(x)z^n;\quad F_U(x,z) = \sum_{n=0}^{\infty}U_n(X)z^n.\]
Definitions of Chebyshev polynomials can be found in the handbook.
We denote by \(P_{k, l}(n)\) the number of partitions of the number \(n\) into at most \(k\) terms, each of which does not exceed \(l\). Prove the equalities:
a) \(P_{k, l}(n) - P_{k, l-1}(n) = P_{k-1, l}(n-l)\);
b) \(P_{k, l}(n) - P_{k-1, l} (n) = P_{k, l-1}(n-k)\);
c) \(P_{k, l}(n) = P_{l, k} (n)\);
d) \(P_{k, l}(n) = P_{k, l} (kl - n)\).