Problems

Age
Difficulty
Found: 2586

One angle of a triangle is equal to the sum of its other two angles. Prove that the triangle is right-angled.

Prove that the segment connecting the vertex of an isosceles triangle to a point lying on the base is no greater than the lateral side of the triangle.

Ten straight lines are drawn through a point on a plane cutting the plane into angles.
Prove that at least one of these angles is less than 20.

One of the four angles formed when two straight lines intersect is 41. What are the other three angles equal to?

The bisector of the outer corner at the vertex C of the triangle ABC intersects the circumscribed circle at the point D. Prove that AD=BD.

The vertex A of the acute-angled triangle ABC is connected by a segment with the center O of the circumscribed circle. The height AH is drawn from the vertex A. Prove that BAH=OAC.

The vertex A of the acute-angled triangle ABC is connected by a segment with the center O of the circumscribed circle. The height AH is drawn from the vertex A. Prove that BAH=OAC.