Problems

Age
Difficulty
Found: 2580

Prove the inequality: \[\frac{(b_1 + \dots b_n)^{b_1 + \dots b_n}}{(a_1 + \dots a_n)^{b_1 + \dots + b_n}}\leq \left(\frac{b_1}{a_1}\right)^{b_1}\dots \left( \frac{b_n}{a_n}\right)^{b_n}\] where all variables are considered positive.

Inequality of Jensen. Prove that if the function \(f (x)\) is convex upward on \([a, b]\), then for any distinct points \(x_1, x_2, \dots , x_n\) (\(n \geq 2\)) from \([a; b]\) and any positive \(\alpha_{1}, \alpha_{2}, \dots , \alpha_{n}\) such that \(\alpha_ {1} + \alpha_{2} + \dots + \alpha_{n} = 1\), the following inequality holds: \(f (\alpha_{1} x_1 + \dots + \alpha_{n} x_n) > \alpha_{1} f (x_1) + \dots + \alpha_{n} f (x_n)\).

Let \(p\) and \(q\) be positive numbers where \(1 / p + 1 / q = 1\). Prove that \[a_1b_1 + a_2b_2 + \dots + a_nb_n \leq (a_1^p + \dots a_n^p)^{1/p}(b_1^q +\dots + b_n^q)^{1/q}\] The values of the variables are considered positive.

Liouville’s discrete theorem. Let \(f (x, y)\) be a bounded harmonic function (see the definition in problem number 11.28), that is, there exists a positive constant \(M\) such that \(\forall (x, y) \in \mathbb {Z}^2\) \(| f (x, y) | \leq M\). Prove that the function \(f (x, y)\) is equal to a constant.

Let \((1 + \sqrt {2} + \sqrt {3})^n = p_n + q_n \sqrt {2} + r_n \sqrt {3} + s_n \sqrt {6}\) for \(n \geq 0\). Find:

a) \(\lim \limits_ {n \to \infty} {\frac {p_n} {q_n}}\); b) \(\lim \limits_ {n \to \infty} {\frac {p_n} {r_n}}\); c) \(\lim \limits_ {n \to \infty} {\frac {p_n} {s_n}}\);

Find the generating functions of the sequences of Chebyshev polynomials of the first and second kind: \[F_T(x,z) = \sum_{n=0}^{\infty}T_n(x)z^n;\quad F_U(x,z) = \sum_{n=0}^{\infty}U_n(X)z^n.\]

Definitions of Chebyshev polynomials can be found in the handbook.

We denote by \(P_{k, l}(n)\) the number of partitions of the number \(n\) into at most \(k\) terms, each of which does not exceed \(l\). Prove the equalities:

a) \(P_{k, l}(n) - P_{k, l-1}(n) = P_{k-1, l}(n-l)\);

b) \(P_{k, l}(n) - P_{k-1, l} (n) = P_{k, l-1}(n-k)\);

c) \(P_{k, l}(n) = P_{l, k} (n)\);

d) \(P_{k, l}(n) = P_{k, l} (kl - n)\).

Author: D.E. Shnol

On the island of Truthland, all of the inhabitants may be mistaken, but the younger ones never contradict the elders, and when the older ones contradict the younger ones, they (the elders) are not mistaken. Between the residents A, B and C there was such a conversation:

A: B is the tallest.

B: A is the tallest.

C: I’m taller than B.

Does it follow from this conversation that the younger the person, the taller he or she is (for the three people having this conversation)?